Understanding the Flo-Dar™ Flow Measuring System

Independent tests verify non-contact flowmeter is highly accurate under both open channel and surcharge conditions

Flo-Dar is the only non-contact open channel velocity/area type flow meter available for measurement of flows in municipal wastewater and storm water sewers. Flo-Dar consists of a radar-based velocity measurement system and an ultrasonic-based pulse echo depth measurement system.

Flo-Dar combines the information from the velocity and depth systems along with site specific data (pipe size, pipe shape, velocity profile) and provides the user with highly accurate, reliable flow data under a wide range of flow velocities and depths. Since the radar velocity sensor and the ultrasonic depth sensor cease to provide useful data when submerged, Flo-Dar has an optional surcharge velocity sensor (electromagnetic type) and depth sensor (pressure transducer) that provides for the continuous measurement of accurate flow data where intermittent, surcharged flow conditions are experienced.

The data system merges the data from these two independent flow systems and provides the user with a single flow signal that accurately represents flow over a range from a dry pipe to extreme surcharge conditions. Accuracy tests performed at Alden Research Labs have shown that the Flo-Dar is highly accurate under both open channel and surcharge (submerged) conditions.

Measurement of Flow Under Free Flow, Non-submerged Conditions

Open Channel Velocity

Open channel flow is any flow in a channel that has a free surface. Flo-Dar measures open channel flow as depicted in Figure 1. The radar velocity sensor measures flow in a manner similar to how radar guns measure the velocity of a baseball or an automobile.
A radar “horn” contained inside of the watertight housing transmits a microwave beam through the housing at a defined angle to the flow surface. Disturbances on the surface reflect some of the microwaves back to the horn. The frequency of these returning microwave signals have been shifted (the Doppler effect) by an amount directly proportional to the speed of the moving surface. This frequency shift is detected and measured by the Flo-Dar flow meter and the data is stored as a measure of the surface velocity.

Since the accurate measurement of open channel flow requires the accurate determination of the average velocity of the flow stream, the measured surface velocity must be dynamically modified to obtain an accurate average velocity for use in the Continuity Equation, \(Q = V_{av} \times A \). Marsh-McBirney has developed and patented a process that yields an accurate determination of the average velocity from the measurement of the surface velocity at a known point on the flow surface.

If one analyzes each of the four factors that influence the accuracy and stability of the measured surface velocity signal, it becomes obvious that a Doppler Radar based velocity sensor is very accurate and stable:

1. Transmitted Frequency - The transmitted frequency of 24.175 GHz is controlled to an accuracy of +/- 0.065%
2. Speed of Microwaves in Air - Essentially constant at the speed of light
3. Angle of Microwave Beam - The sensor is placed in a rigid mount that is positioned parallel to the water surface (i.e. nearly level). The sensor can be removed from the mount and reinstalled while easily maintaining its original mounting location.
4. Calculation of Mean Velocity — The relationship between the sensed (surface) velocity and the average velocity varies with pipe size and water depth.
By applying algorithms developed through basic hydraulic principles and from actual flow data taken at Alden Labs and at various customer sites, the surface velocity is transformed into an accurate representation of the mean velocity.

Since the location of the sensing region on the flow surface is known, the repeatability of the surface velocity measurement is excellent and its relationship to the mean velocity is predictable.

Figures 2a, 2b, 2c and 2d depict the relationship that exists between various velocity contours and the mean velocity at different depth/Diameter ratios. Note that the velocity gradients that exist throughout the flow cross section are generally represented at the flow’s surface - essentially creating a “finger-print” of the velocity contours that exist beneath the surface.

As one might expect, the velocities near the wall are less than the mean velocity and those near the surface are greater than the mean velocity. Since a) the radar sensor measures surface velocity at a know location on the flow surface, and b) these various surface velocities have known relationships to the mean velocity, then the mean velocity can be reliably and accurately calculated.

Note that the velocities present on the surface are typically within 10% of the average velocity. The accuracy of the calculated mean velocity, after correction, is typically between 2% to 5%. (See Note 1.)

Ultrasonic Pulse Echo Depth Measurement

Ultrasonic pulse echo depth sensors operate by energizing a piezoelectric transducer with an electronic pulse. This pulse creates an ultrasonic pulse of energy that travels to the flow surface where a portion of the energy returns to the transducer.

The transit time to the flow surface and back is recorded and the distance calculated by knowing the speed of sound at the site which has been corrected by an embedded temperature sensor. The accuracy of the depth measurement is 1%, +/- 0.1 inch.

Measurement of Flow Under Submerged Conditions

Electromagnetic (EM) Surcharge Velocity Sensor

As stated previously, the radar based velocity sensor measures the surface velocity of the flowing stream by detecting the average speed of the surface irregularities. When the radar sensor becomes totally submerged, it becomes “blind” and is no longer capable of measuring the fluid velocity.
Figures 2a, 2b, 2c and 2d depict the relationship that exists between various velocity contours and the mean velocity at different \(d/D \) ratios. Note that the velocity gradients that exist throughout the flow cross section are generally represented at the flow’s surface—essentially creating a “finger-print” of the velocity contours that exist beneath the surface.
To allow for the uninterrupted measurement of flow under conditions that change from open channel flow to submerged flow as experienced in sewers that surcharge, Marsh-McBirney has added an additional surcharge velocity sensor. Placed on the underside of the standard Flo-Dar sensor, this electromagnetic sensor becomes active when the flow level rises to within four inches of the Radar horn and remains activated until the flow once again falls beneath that depth.

The optional surcharge velocity sensor is based on the Faraday Principle of Electromagnetic Induction. This is the same well-proven principle that “full bore” or “spool-piece” magmeters utilize, the most widely used method of measuring wastewater flow in full pipes.

In the Marsh-McBirney design, an electromagnet embedded within the streamlined sensor generates a magnetic field in the flowing stream. The flow of the water passing through this magnetic field generates voltages in the water that are directly proportional to the speed of the water passing the sensor. Marsh-McBirney uses an in-house 120 foot long towing basin for calibration of electromagnetic sensors. Tow carriage accuracy is better than +/- 0.5%.

Surcharge Depth Sensor

Once submerged conditions exist, the ultrasonic depth sensor ceases to provide useful depth information. To measure depth of the flow during surcharge conditions, a pressure transducer embedded in the Flo-Dar sensor is used in the system.

The location of the surcharge velocity sensor relative to the crown of the pipe is shown in Figure 3. This location provides sensing of the velocity stream just below the crown of the pipe where the flow exits the upstream piping. Empirical data, verified by independent tests at Alden Labs in Holden, Massachusetts indicate that the velocity measured at this location, when multiplied by 0.9, is typically equal to the average velocity.
Laboratory Tests
In September 2002 Marsh-McBirney contracted Alden Research Labs of Holden, Massachusetts to perform flow accuracy tests on the Flo-Dar sensor with an electromagnetic surcharge sensor. The Flo-Dar was subjected to a flow range of 400 gpm to over 9000 gpm in a pipe size of 23.5 inches. The pipe had a slope of approximately zero. The test results are shown in Figure 4, Figure 5, Figure 6 and Figure 7.

The flow tests showed that the Flo-Dar compared very favorably with the Alden flow standard (weigh tank) over a wide range of flows where the open channel flow ranged from 400 gpm to 6000 gpm, and the surcharge (submerged) flow ranged from 6000 gpm to 9000 gpm.

Tests were also run to depict how Flo-Dar performs under transition conditions where the flow goes from an open channel condition to a surcharge (submerged) condition.

Test results show that the data from the open channel radar sensor and surcharge electromagnetic sensor overlay each other and the Alden Standard. Tests were run under both free flow conditions as well as where the pipe outlet was partially blocked so as to create an entirely different velocity/depth relationship.

Additional flow accuracy tests were run on a 36” pipe at Alden on July 17, 2003. All of the data points were shown to be within 3.5% of the Alden Standard.

Figure 4 compares the Flo-Dar flow vs. the Alden Standard (weigh tank). The flow condition for this test was both open channel flow and surcharge (submerged) flow.
Test results show that the data from the open channel radar sensor and surcharge electromagnetic sensor overlay each other and the Alden Standard.

Figure 5 compares the velocity measured by the Radar sensor plotted against flow depth. Note that when the depth reaches approximately 18 inches the EM surcharge sensor has been activated. There is one data point where both sensors are active and then the EM surcharge sensor continues to measure after the radar sensor has become submerged and inoperative.

Figure 6 depicts a second surcharge test where the flow was incremented more slowly in order to achieve additional data points in the area where both the Radar sensor and the EM surcharge sensors are active simultaneously. Note that both the Radar sensor and the EM sensor are active between flow depths of 18 inches and 18.5 inches. Also, note how both the Radar and EM data points overlay each other and the Alden standard.
The accuracy of Flo-Dar under both open channel conditions as well as surcharge (submerged) conditions is more than adequate for the most demanding of metering applications including open channel billing applications.

Figure 7 depicts the result of a surcharge test at a lower flow rate. In this test, a round plate with multiple holes was placed at the outlet of the test pipe so as to achieve submerged flow at a lower velocity. Note the consistency of both the Radar velocity data and the EM velocity data as compared to the Alden standard.

Additional tests performed at Alden in 2003 on a 36” pipe again validated Flo-Dar’s accuracy under open channel and surcharge flow.

Figure 8 compares the Flo-Dar flow vs. the Alden Standard (weigh tank) for flow accuracy tests in a 36” pipe. These tests were performed on July 17, 2003. Note that at 17,000 gpm the sensor was under surcharge conditions. All of the data points were shown to be within 3.5% of the Alden Standard.
Flo-Dar measures open channel velocity and depth by non-contact means virtually eliminating the need to periodically clean the sensors as required by all submerged type sensors.

Data recovery from Flo-Dar deployments ranges between 98% to 100% even under site conditions that render most submerged sensors inoperable.

The Flo-Dar data logger records all four of the flow parameters - open channel surface velocity and depth, and surcharged velocity and depth. When the water depth is below the bottom of the Flo-Dar sensor, only the surface velocity and the flow depth of the open channel flow are used in the flow calculation.

Once the flow depth is such that both the surcharge depth sensor is activated and a conductivity switch is activated, then flow is calculated using the full pipe dimensions for area and the surcharge velocity sensor for velocity.

Conclusions
Flo-Dar is a rugged, general purpose flow meter for use in most open channels such as sanitary sewers, storm water sewers and other man-made channels such as aqueducts as well as certain natural channels such as small streams. Flo-Dar measures open channel velocity and depth by non-contact means virtually eliminating the need to periodically clean the sensors as required by all submerged type sensors. Data recovery from Flo-Dar deployments ranges between 98% to 100% even under site conditions that render most submerged sensors inoperable.

The accuracy of Flo-Dar under both open channel conditions as well as surcharge (submerged) conditions is more than adequate for the most demanding of metering applications including open channel billing applications.

Note 1. The accuracy of open channel flow meters can be affected by adverse conditions present at any metering site. The accuracy specifications of most manufacturers are generally stated under ideal conditions.