Table of Contents

Section 1 Specifications... 3
Section 2 General Information... 5
 2.1 Safety information .. 5
 2.1.1 Use of hazard information .. 5
 2.1.2 Precautionary labels ... 5
 2.1.3 Confined space entry ... 6
 2.2 Product overview ... 6
 2.2.1 Flo-Tote 3 flow system features .. 6
 2.2.2 Applications of a Flo-Tote 3 system ... 6
 2.2.3 Advantages of a Flo-Tote 3 system ... 7
 2.3 Theory of operation .. 7
 2.3.1 Velocity measurement .. 7
 2.3.2 Depth measurement ... 8
 2.3.3 Flow calculation ... 8
Section 3 Installation... 9
 3.1 Component list .. 9
 3.2 Site location guidelines .. 9
 3.3 Sensor installation ... 12
 3.3.1 Sensor installation kits ... 12
 3.3.2 Connection to the Flo-Logger, FL900 Series Logger or Flo-Station .. 12
 3.4 Dams for low-flow applications .. 13
 3.4.1 Dam construction ... 13
 3.4.2 Dam installation .. 14
Section 4 Maintenance... 15
 4.1 Sensor cleaning ... 15
 4.2 Changing the Sensor Desiccant ... 15
 4.2.1 Desiccant replacement procedure .. 15
 4.3 Hydrophobic filter description ... 16
 4.4 Hydrophobic filter replacement procedure ... 17
Section 5 Troubleshooting... 19
Section 6 Contact Information... 21
Appendix A Velocity profiling .. 23
 A.1 About velocity profiling .. 23
 A.2 Site selection .. 24
 A.3 Profile guidelines ... 24
 A.4 Depth of flow measurements ... 24
 A.5 Velocity profile calculations ... 25
 A.5.1 .9 x Vmax method .. 25
 A.5.2 .2, .4, .8 method .. 26
 A.5.3 .4 method .. 26
 A.5.4 2D method ... 26
 A.6 Auto-Cal automatic calibration .. 28
 A.7 Calibrate the sensor using the Cal Wizard in the Flo-Ware software 28
Appendix B Flow calculations .. 29
 B.1 Circular channels ... 29
 B.2 Rectangular channels ... 32
 B.3 Rivers and streams .. 33
 B.4 Flow unit conversions .. 35
Section 1 Specifications

Specifications are subject to change without notice.

Table 1 Sensor specifications

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>Dimensions</td>
<td>13.1 cm W x 4.4 cm L x 2.8 cm diameter (5.16 in. x 1.73 in. x 1.10 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>1.1 kg (2.4 lb) with 30 ft cable</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 to 45 °C (32 to 113 °F)</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>0-100%</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>–20 to 52° C (–4 to 125° F)</td>
</tr>
<tr>
<td>Power requirements</td>
<td>10V, 100 mA. Sensor power is supplied by the portable Flo-Logger or by the Flo-Station Monitor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocity measurement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Electromagnetic (Faraday’s law)</td>
</tr>
<tr>
<td>Range</td>
<td>–1.5 to 6.1 m/s (–5 to 20 ft/s)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 2% of reading</td>
</tr>
<tr>
<td>Zero stability</td>
<td>± 0.015 m/s (± 0.05 ft/s) at 0 to 3 m/s (0 to 10 ft/s)</td>
</tr>
<tr>
<td>Resolution</td>
<td>± 0.0003 m/s (0.01 ft/s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth measurement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Submerged pressure transducer</td>
</tr>
<tr>
<td>Range</td>
<td>Standard 10 mm to 3.5 m (0.4 to 138 inches). Contact the factory for extended ranges</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 1% reading</td>
</tr>
<tr>
<td>Zero stability</td>
<td>± 0.009 m (± 0.03 feet), for 0 to 3 m (0 to 10 ft) Includes non-linearity, hysteresis and velocity effects.</td>
</tr>
<tr>
<td>Resolution</td>
<td>2.5 mm (0.1 in.)</td>
</tr>
<tr>
<td>Over range protection</td>
<td>2X range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flow measurement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Conversion of water level and pipe size to fluid area. Conversion of local velocity reading to mean velocity. Multiplication of fluid area by mean velocity to equal flow rate. Conversion accuracy: ± 5.0% of reading. Assumes appropriate site calibration coefficient, pipe flowing 10% to 90% full with a level greater than 5.08 cm (2 in.).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature measurement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>1 wire digital thermometer</td>
</tr>
<tr>
<td>Range</td>
<td>–10 to 85 °C (14 to 185 °F)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 2 °C (± 3.5 °F)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor cable</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Polyurethane jacketed</td>
</tr>
<tr>
<td>Standard length</td>
<td>9.1 m (30 ft)</td>
</tr>
<tr>
<td>Optional length</td>
<td>18.2 m, 30.4 m (60,100 ft) or length as needed; maximum 304 m (1000 ft)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warranty</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Warranty</td>
<td>One year from date of shipment. Does not apply to such consumable components, such as, but not limited to, desiccants and batteries.</td>
</tr>
</tbody>
</table>
Section 2 General Information

2.1 Safety information

Please read this entire manual before unpacking, setting up or operating this equipment. Pay attention to all danger, warning and caution statements. Failure to do so could result in serious injury to the operator or damage to the equipment.

Make sure that the protection provided by this equipment is not impaired, do not use or install this equipment in any manner other than that specified in this manual.

2.1.1 Use of hazard information

DANGER
Indicates a potentially or imminently hazardous situation which, if not avoided, will result in death or serious injury.

WARNING
Indicates a potentially or imminently hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION
Indicates a potentially hazardous situation that may result in minor or moderate injury.

Notice: Indicates a situation that is not related to personal injury.

Important Note: Indicates a situation which, if not avoided, may cause damage to the instrument. Information that requires special emphasis.

Note: Information that supplements points in the main text.

2.1.2 Precautionary labels

Read all labels and tags attached to the instrument. Personal injury or damage to the instrument could occur if not observed. A symbol, if noted on the instrument, will be included with a danger or caution statement in the manual.

This is the safety alert symbol. Obey all safety messages that follow this symbol to avoid potential injury. If on the instrument, refer to the instruction manual for operation or safety information.

Electrical equipment marked with this symbol may not be disposed of in European public disposal systems after 12 August of 2005. In conformity with European local and national regulations (EU Directive 2002/96/EC), European electrical equipment users must now return old or end-of-life equipment to the Producer for disposal at no charge to the user.

Note: For return for recycling, please contact the equipment producer or supplier for instructions on how to return end-of-life equipment, producer-supplied electrical accessories, and all auxiliary items for proper disposal.

This symbol, when noted on the product, indicates the presence of devices sensitive to Electro-static Discharge (ESD) and indicates that care must be taken to prevent damage with the equipment.
2.1.3 Confined space entry

The following information is provided to guide users of Flo-Tote 3 sensors on the dangers and risks associated with entry into confined spaces.

WARNING

Potential confined space hazards. Training in pre-entry testing, ventilation, entry procedures, evacuation/rescue procedures and safety work practices is necessary to ensure against the loss of life in confined spaces.

On April 15, 1993, OSHA's final ruling on CFR 1910.146, Permit Required Confined Spaces, became law. This standard directly affects more than 250,000 industrial sites in the United States and was created to protect the health and safety of workers in confined spaces.

Definition of Confined Space

A Confined Space is any location or enclosure that presents or has the immediate potential to present one or more of the following conditions:

- An atmosphere with less than 19.5% or greater than 23.5% oxygen and/or more than 10 ppm Hydrogen Sulfide (H2S)
- An atmosphere that may be flammable or explosive due to gases, vapors, mists, dusts, or fibers
- Toxic materials which upon contact or inhalation, could result in injury, impairment of health, or death

Confined spaces are not designed for human occupancy. They have restricted entry and contain known or potential hazards. Examples of confined spaces include manholes, stacks, pipes, vats, switch vaults, and other similar locations.

Standard safety procedures must always be followed prior to entry into confined spaces and/or locations where hazardous gases, vapors, mists, dusts, or fibers may be present. Before entering any confined space check with your employer for procedures related to confined space entry.

2.2 Product overview

The Flo-Tote 3 sensor measures the velocity and depth of conductive liquids in open channels using electromagnetic sensor technology. The sensor connects to a data logger or to a Flo-Station to make a complete flow system.

2.2.1 Flo-Tote 3 flow system features

- Fully submersible sensor
- Debris-shedding sensor
- Measurement for extremely low velocities and reverse flow
- Operation under free flow, non-free flow or surcharge conditions
- Field replaceable sensor
- No calibration required
- Increased signal intensity for greasing applications
- Flow temperature measurement

2.2.2 Applications of a Flo-Tote 3 system

- Perform inflow & infiltration (I&I) studies
- Perform water distribution/leak isolation studies
General Information

- Evaluate existing sewer systems and storm water systems
- Monitor the flow from towns and cities
- Monitor the sewer overflow into streams and rivers
- Monitor the industrial flow from factories
- Measure the efficiency of pump stations
- Validate the accuracy of existing flow meters

2.2.3 Advantages of a Flo-Tote 3 system

Accurate: Flo-Tote 3 flow system uses the most accurate method of calculating flow, based on the continuity equation: \(\text{Flow} = \text{Average Velocity} \times \text{Area} \). Verification of the Flo-Tote 3 specifications by an independent flow laboratory assures commitment to accuracy. Thousands of users worldwide have verified Flo-Tote accuracy.

Portable (FL900 Series Logger or Flo-Logger): The Flo-Logger can be moved to different sites quickly and easily. This means having the ability to accurately measure flow at all sites, without having to purchase a flow meter for each location. The Flo-Logger uses (2) standard, six-volt lantern batteries. Refer to the Flo-Logger User Manual (DOC026.53.00788). The FL900 Series Flow Logger uses (2) or (4) standard, six-volt lantern batteries and is also compatible with the long-life alkaline battery (8542900). Refer to the FL900 Series Flow Logger User Manual (DOC026.97.80015).

Permanent (Flo-Station): The four programmable 4–20 mA outputs provide a convenient way to transfer real-time flow data to SCADA and other data collection systems, control systems and display devices. Refer to the Flo-Station User Manual (DOC026.53.00790).

Reliable: The Flo-Tote 3 Flow System even operates under surcharge conditions. The Flo-Tote 3 sensor contains no moving parts, which makes it more reliable than other sensors.

Adaptable: The Flo-Tote 3 Flow System adapts to a wide range of pipe sizes and shapes, eliminating the need for costly weirs or flumes.

2.3 Theory of operation

The Flo-Tote 3 open channel sensor directly measures water velocity and depth.

2.3.1 Velocity measurement

The sensor makes use of Faraday's Law of electromagnetic induction to measure water velocity. Faraday's Law states: A conductor, moving through a magnetic field, produces a voltage.

Because water is a conductor, water moving through a magnetic field produces a voltage. The magnitude of the voltage is directly proportional to the velocity of the water. The open channel sensor generates an electromagnetic field, creating a voltage in the water. The two velocity electrodes along with the ground electrode measure this voltage (refer to Figure 1). A faster water velocity produces a higher voltage. By accurately measuring this voltage, the velocity is determined.

Non-Fouling electrodes

The sensor features non-fouling electrodes. These are raised, pointed electrodes which reduce the amount of grease and debris build-up. When the electrodes become coated, they no longer measure the water velocity accurately. The non-fouling electrodes are designed to prevent an accumulation of debris.
2.3.2 Depth measurement

A pressure transducer is used to measure the depth of the water. The transducer is an electronic device which uses a thin diaphragm to convert pressure to an electronic signal. The depth transducer is located inside the sensor. The cross channel (located on the bottom of the sensor) allows water pressure to reach the transducer, while at the same time protecting the fragile diaphragm from damage.

An air tube, running through the length of cable from the sensor to the desiccant junction box, enables the transducer to cancel out the atmospheric pressure in order to measure the true water pressure. The air tube (called the atmospheric pressure reference or APR tube) needs to be protected from water, which can damage the transducer.

2.3.3 Flow calculation

The velocity and depth measurements provided by the open channel sensor are used to calculate flow. Flow (also known as Q, flow rate, or throughput) is the amount of fluid moving through a channel or pipe in a period of time. For example, if 100 gallons of water move past the sensor in one minute, the flow is 100 gallons per minute (GPM). Flow calculations are performed by the flow meter (Flo-Logger, Flo-Station or other flow meters).

To calculate flow, two things are needed:
- The cross-sectional area of the channel. Cross-sectional area is found using the dimensions of the channel and the measured depth.
- The average velocity. Average velocity is found using the sensed velocity (measured by the sensor). The default calibration coefficient is often adequate. A site calibration will verify or improve accuracy. A site calibration determines the velocity profile and calculates the correct calibration coefficient for the particular application. For more information on velocity profiling, refer to Appendix A on page 23.

Flow is calculated by using the continuity equation:

\[\text{Flow} = \text{AverageVelocity} \times \text{Area} \]

\[Q = V \times A \]

where

\[Q = \text{Flow} \]

\[V = \text{AverageVelocity} \]

\[A = \text{Wetted Area (calculated from depth and the channel geometry)} \]

Data is sent from the Flo-Tote 3 electromagnetic sensor to a Flo-Logger, FL900 Series Logger or a Flo-Station via a cable. Flow data is transferred from the Flo-logger to a laptop/desktop/PocketPC computer via communications cable.
3.1 Component list

Before going into the field, make sure that all sensor components are included in the shipment. Refer to Figure 2.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flo-Tote 3 sensor</td>
</tr>
<tr>
<td>2</td>
<td>Carabiner clip</td>
</tr>
<tr>
<td>3</td>
<td>Hanging strap</td>
</tr>
<tr>
<td>4</td>
<td>Cable connector or bare wires</td>
</tr>
<tr>
<td>5</td>
<td>Desiccant container</td>
</tr>
<tr>
<td>6</td>
<td>Desiccant hub junction box</td>
</tr>
</tbody>
</table>

Determine what tools are needed for complete installation. Customer-supplied equipment:

- Sensor mounting kit
- Base
- Electrical tape to wrap the cable and band together (optional)
- Socket and ratchet wrench
- Tie wraps

3.2 Site location guidelines

The guidelines in this section are not mandatory but will help performance. Accuracy can be affected if these guidelines are not followed.

For best accuracy, install the sensor where the flow is not turbulent. An ideal location is in a manhole just downstream from a long, straight channel or pipe. Outfalls, vertical drops, baffles, curves or junctions cause the velocity profile to become distorted (refer to Site selection on page 24).

Where there are outfalls, vertical drops, baffles, curves or junctions, install the sensor upstream or downstream as shown in Figure 3 and Figure 4. For upstream locations, install the sensor at a distance that is at least five times the pipe diameter or maximum fluid level. For downstream locations, install the sensor at a distance that is at least ten times the pipe diameter or maximum fluid level.
Figure 3 Sensor location near an outfall, vertical drop or baffle

1 Acceptable upstream sensor location
2 Outfall
3 Distance upstream: 5 x pipe diameter
4 Acceptable downstream sensor location
5 Distance downstream: 10 x pipe diameter
6 Vertical drop
7 Baffle
Figure 4 Sensor location near a curve, elbow or junction

1 Acceptable upstream sensor location

2 Acceptable downstream sensor location

3 Distance downstream: 10 x pipe diameter

4 Distance upstream: 5 x pipe diameter
3.3 Sensor installation

Sensor installation involves attachment of the sensor to a metal band or plate which is then installed in a pipe or channel.

3.3.1 Sensor installation kits

Several kits are available for sensor installation to accommodate various pipe sizes and shapes. Installation instructions are provided with each kit.

- **Scissors-jack band**—circular metal band that stays in place when a scissors jack is tightened. Available for pipe diameters of 16 to 61 inches. Instruction sheet: DOC273.53.80003.

- **Partial bands**—metal band that covers the bottom half of a channel and stays in place by attachment to the channel wall. Instruction sheet: DOC273.53.80002.

- **Rectangular channel mount**—pole with metal plates that stays in place by attachment to the channel ceiling. Instruction sheet: DOC273.53.80004.

3.3.2 Connection to the Flo-Logger, FL900 Series Logger or Flo-Station

Connect the cable from the sensor to the Flo-Logger, FL900 Series Logger or Flo-Station.

- Flo-Logger and FL900 Series Logger—connect the cable from the sensor to the Flo-Dar connector on the logger.

- Flo-Station—connect the cable from the sensor to the correct terminal in the Flo-Station.
3.4 Dams for low-flow applications

At least two inches of water is necessary for accurate velocity measurements. If the site frequently experiences low-flow conditions, use a dam to raise the water level. Locate the sensor at least one foot in front of the dam.

3.4.1 Dam construction

A low-flow dam can be made as follows:

1. Make a mold for the dam from a section of pipe with the same diameter as the dam site. Place a board at one end of the pipe, and angle the pipe to approximately 30º (refer to Figure 5).

2. Pour pre-mixed concrete into the mold. The top of the dam should be 2 inches high.

3. Allow the concrete to fully set.

Figure 5 Low-flow dam construction

<table>
<thead>
<tr>
<th>1</th>
<th>Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pre-mix concrete</td>
</tr>
<tr>
<td>3</td>
<td>Cut-pipe section</td>
</tr>
</tbody>
</table>
3.4.2 Dam installation

Install the dam at the site, approximately one foot downstream from the sensor. The easiest way to attach the dam to the pipe or channel is with hydrolytic cement or waterproof caulking. The dam can also be attached with lead anchors and lag bolts. Installation options are shown in Figure 6.

Figure 6 Installation options for low-flow dams

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low-flow dam</td>
</tr>
<tr>
<td>2</td>
<td>Flow sensor</td>
</tr>
<tr>
<td>3</td>
<td>Lag bolt</td>
</tr>
<tr>
<td>4</td>
<td>Bottom of pipe</td>
</tr>
<tr>
<td>5</td>
<td>Lead anchor</td>
</tr>
<tr>
<td>6</td>
<td>Pipe outfall</td>
</tr>
<tr>
<td>7</td>
<td>Metal strap</td>
</tr>
<tr>
<td>8</td>
<td>Metal strap</td>
</tr>
</tbody>
</table>
Section 4 Maintenance

WARNING
Potential confined space hazards. Only qualified personnel should conduct the tasks described in this section of the manual.

4.1 Sensor cleaning

Important Note: Do not use sandpaper to clean the non-fouling electrodes. Sandpaper can damage the electrodes.

1. To clean the sensor, pour a small amount of liquid detergent cleaner on a soft bristle brush. Use this brush to clean the electrodes on top of the sensor.
2. Rinse with clean water.

<table>
<thead>
<tr>
<th>1</th>
<th>Ground electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Velocity electrodes</td>
</tr>
</tbody>
</table>

4.2 Changing the Sensor Desiccant

The desiccant canister contains beads of silica gel which ensure proper operation of the pressure transducer located in the Tote 3 sensor. When the beads are yellow, they can absorb moisture from the air. When they are green, they are saturated and cannot absorb any more moisture from the air, and they must be replaced immediately.

The cable assembly with desiccant hub is compatible with either the Flo-Logger or the FL900 Loggers. When using this cable assembly with the Flo-Logger, do not disconnect the desiccant cartridge that is attached to the Flo-Logger itself.

Important Note: When the beads begin to turn green, replace or rejuvenate the beads. Permanent damage to the sensor may occur if the desiccant is not maintained. Never operate the sensor without the proper desiccant. When rejuvenating beads, remove them from the canister and heat at 100-180 °C (212-350 °F) until the beads turn yellow. If the beads do not turn yellow, replace them with new beads. Do not heat the canister.

4.2.1 Desiccant replacement procedure

Note: Replacing the desiccant does not require that the desiccant container be removed from the desiccant box.

1. Use a slight twisting motion to twist the bottom end-cap until its slots align with the retaining clips (Figure 8).
2. Gently remove the end cap by grasping it and pulling it straight out.
3. Pour the desiccant beads out of the canister.
4. Hold the canister up to the light and inspect the hydrophobic filter.
 - If you see a small, dim light spot while looking through the hole, the filter is in good condition. If you see a bright light spot, the filter is probably torn. Replace the filter.
Maintenance

- If the desiccant beads were completely saturated with water or the filter has saturated with water or grease, replace the filter.

5. Refill the canister tube with yellow desiccant beads (Cat. No. 8755500). Inspect the O-ring (Cat. No. 5252) on the bottom cap for cracking, pits, or evidence of leakage. Replace if necessary.

Note: Applying O-ring grease to new or dry O-rings improves the ease of insertion, sealing, and life span of the O-ring.

6. Make sure that the O-ring is clean and free of dirt or debris before replacing the end cap.

7. Reinstall the end cap.

4.3 Hydrophobic filter description

A single Teflon® hydrophobic filter (Cat. No. 3390) is installed in the top of the canister to prevent liquid from entering the vent tube.
For best performance and to avoid grease buildup on the filter during submergence or surcharge conditions, hang the canister vertically so that the end cap points downward (refer to Figure 8).

Note: The Hydrophobic Filter may need replacement at any time the cartridge is submerged or exposed to excess moisture. Refer to section 4.4.

4.4 Hydrophobic filter replacement procedure

1. Disconnect the tubing from the top of the desiccant canister.

2. Unscrew the hex-head tubing nipple from the top of the canister and discard the old filter.

3. Discard any remnants of Teflon tape from the nipple threads. Apply two turns of Teflon tape (Cat. No. 10854-45) to the threads, pulling the tape into the threads until it conforms to the shape of the threads.

4. Place a new filter over the hole. Make sure that the smooth side of the filter faces the inside of the canister.

5. Place the threaded nipple on top of the filter.

6. With slight pressure, press the filter into the hole with the nipple threads and begin threading the nipple into the hole. The filter will deflect upward and feed completely into the thread until it disappears. The filter must rotate with the nipple as it is threaded into the cap. If it does not, it is torn. Start over with a new filter.

7. Inspect the installation. In the upper cap, a small, dim light spot should be visible when held up to the light. A bright spot indicates a torn filter. Start over with a new filter.

![Figure 9 Replacing the hydrophobic filter](image)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Filter, smooth side down</td>
</tr>
<tr>
<td>2</td>
<td>Hex-head tubing nipple</td>
</tr>
<tr>
<td>3</td>
<td>Finished assembly</td>
</tr>
</tbody>
</table>
When a problem occurs, isolate the problem to the sensor, the logger or the interconnect cable. Some typical problems and solutions are shown in Table 2.

Table 2 Troubleshooting table

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudden drops in velocity</td>
<td>The velocity electrodes are covered with debris.</td>
<td>Clean the sensor. Make sure the sensor is installed correctly.</td>
</tr>
<tr>
<td>Conductivity lost error message</td>
<td>The velocity electrodes are dry.</td>
<td>Make sure the water level is above the sensor. If the water level is low, construct a low-flow dam.</td>
</tr>
<tr>
<td></td>
<td>The velocity electrodes are covered with debris or grease.</td>
<td>Clean the sensor.</td>
</tr>
<tr>
<td>Noisy velocity</td>
<td>There may be electrical noise in the pipe.</td>
<td>Identify and eliminate the source of the interference (if possible).</td>
</tr>
<tr>
<td>Depth measurements are incorrect or drift</td>
<td>Water is in the APR tube.</td>
<td>Replace the desiccant (or APR filter) cartridge. If possible, remove the sensor and allow it to dry.</td>
</tr>
<tr>
<td>Depth measurements are incorrect (stuck at zero or at full scale)</td>
<td>The internal depth transducer may be damaged.</td>
<td>Contact customer support.</td>
</tr>
</tbody>
</table>
Section 6 Contact Information

Ordering information for the U.S.A.

<table>
<thead>
<tr>
<th>By Telephone:</th>
<th>By Fax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(800) 368-2723</td>
<td>301-874-8459</td>
</tr>
</tbody>
</table>

By Mail:
Hach Company
4539 Metropolitan Court
Frederick, MD 21704-9452, U.S.A

Ordering information by e-mail:
hachflowsales@hach.com

Information Required

- Hach account number (if available)
- Your name and phone number
- Purchase order number
- Brief description or model number
- Billing address
- Shipping address
- Catalog number
- Quantity

European Union
Flow-Tronic
Rue J.H. Cool 19a
B-4840 Welkenraedt
Belgium
Tel: +32-87-899799
Email: site@flow-tronic.com
www.flow-tronic.com

Outside the U.S.A. and EU
Hach Company maintains a worldwide network of dealers and distributors. To locate the representative nearest you, send E-mail to hachflowsales@hach.com or visit www.hachflow.co.

Technical Support
Technical and Customer Service Department personnel are eager to answer questions about our products and their use. In the U.S.A., call 1-800-368-2723. Outside the U.S.A. and Europe, send E-mail to hachflowservice@hach.com or call 1-301-874-5599.

Repair Service
Authorization must be obtained from Hach Company before sending any items for repair.

1. Identify the serial number of the sensor.
2. Record the reason for return.
3. Call the Customer Service Department (1-800-368-2723) and get a Service Request Number (SRN) and shipping label.
4. Use the shipping label provided and ship the equipment in the original packaging if possible.

Note: Do not ship manuals, computer cables, or other parts with the unit unless they are required for repair.
5. Make sure the equipment is free from foreign debris and is clean and dry before shipping. Sensors returned without cleaning will be charged a fee.

6. Write the SRN number on the shipping box.

7. Make sure that all return shipments are insured.

8. Address all shipments to:

Hach Company
5600 Lindbergh Drive - North Dock
Loveland, Colorado, 80539-0389 U.S.A.
Attn: SRN#XXX
Appendix A Velocity profiling

WARNING
Potential confined space hazards. Only qualified personnel should conduct the tasks described in this section of the manual.

A.1 About velocity profiling

The sensor measures the water velocity at the bottom of the channel or pipe (called the sensed velocity). To calculate flow, the user needs to know the average velocity across the entire channel or pipe cross-section.

The average velocity is different from the sensed velocity because the water moves at different velocities at different parts of the cross section. The process of correcting the sensed velocity by measuring the average velocity is called profiling.

Profiling a site involves directly measuring the water velocity at several points across the pipe cross-section to determine the average velocity. The controller uses this profile information along with the sensed velocity and depth reported by the flow sensor to calculate the correct site calibration coefficient for the application.

The sensed velocity and depth should be obtained during or close to the time the velocity profile was done. The correct site calibration coefficient will allow the average velocity to be calculated accurately from sensed velocity at all depths.

Note: Because the exact procedure for performing a velocity profile will vary depending on the type of velocity profiling meter, the information included here is for general purposes. Refer to the user manual for the velocity profiling meter that is used for specific information.

![Figure 10 Typical velocity profile](image)
A.2 Site selection

A site which has a typical profile shape will give the most accurate results. For most cases, sites which may be difficult to profile can be identified by a visual inspection. Use the following guidelines to select a site:

1. The channel should have as much straight run as possible. Where the length of straight run is limited, the length upstream from the profile should be twice the downstream length.

2. The channel should be free of flow disturbances. Look for protruding pipe joints, sudden changes in diameter, contributing side streams, outgoing side streams, or obstructions. Clean any rocks, sediment, or other debris that might be on the bottom of the pipe.

3. The flow should be free of swirls, eddies, vortices, backward flow, or dead zones. Avoid areas that have visible swirls on the surface.

4. Avoid areas immediately downstream from sharp bends or obstructions.

5. Avoid converging or diverging flow (approach to a flume) and vertical drops.

6. Avoid areas immediately downstream from a sluice gate or where the channel empties into a body of stationary water.

A.3 Profile guidelines

For best possible results:

1. Measure the horizontal and vertical diameter of the pipe. If there is a difference, then use the average for the inside diameter of the pipe.

2. Make sure the flow is symmetrical.

3. Measure the depth several times during the procedure.

4. Examine the pipe for rocks, sediment and other debris.

A.4 Depth of flow measurements

To perform a velocity profile, measure the depth of flow in the pipe:

1. Measure the inside diameter of the pipe.

2. Measure the distance from the top of the pipe to the top of the water (Figure 11).

3. Subtract this distance from the inside diameter of the pipe. This is the depth of flow.

Note: The depth and velocities must be measured in the same vertical plane (Figure 12).
A.5 Velocity profile calculations

There are four methods for profiling a site. The method chosen depends on the conditions at the site.

A.5.1 .9 x Vmax method

The .9 x Vmax method is the simplest method. Measure the velocity at different points of the cross section to determine the maximum velocity in the pipe. The average velocity is calculated by multiplying the maximum velocity by 0.9. This method should be used for:

- Low flows—flows of less than two inches depth.
- Rapidly changing flows—a flow that is changing more than 10% in three minutes or less can be classified as rapidly changing.

To profile the flow:
1. Measure the velocity at a series of points throughout the entire flow.
2. Identify the fastest velocity. In most cases, this is located in the center just beneath the surface.
3. Multiply the fastest velocity by 0.9.
Velocity profiling

A.5.2 .2, .4, .8 method

The .2, .4, .8 method is the most common method for profiling a typical flow. The velocity is measured at three points: .2, .4, and .8 times the total depth of flow. The velocity from each point is entered into the meter. This method should be used for:

- **Typical flows**—any site which does not have any disturbances, obstructions, turbulence, etc. Refer to Site selection on page 24.

To profile the flow:
1. Measure the depth of flow (refer to section A.4 on page 24).
2. Calculate the measurement positions on the center line:
 - .2 position = 0.2 x depth of flow
 - .4 position = 0.4 x depth of flow
 - .8 position = 0.8 x depth of flow
3. Measure the velocities at the .2, .4, and .8 positions (Figure 13).
4. Calculate the average of the .2 and .8 velocities.
5. Calculate the average of the .4 velocity with the .2 and .8 average from step 4.

![Figure 13 Measurement positions for .2, .4, and .8 method](image)

A.5.3 .4 method

The .4 method is a simplified version of the .2, .4, .8 method. The velocity is measured at the .4 position only. Use this method for:

- **Low flows**—sites free of obstructions, etc., but without sufficient depth to measure the velocity at three points.

A.5.4 2D method

The 2D method uses the velocities from the center line, the vertical velocity lines, and corners of the flow. Use this method for:

- **Asymmetrical flows**—sites that have velocities that differ by more than 30% on either side of the pipe (for example, near a bend).
- **Vertical drops**—sites that are near an outfall or other change in depth.
- **Irregular flows**—any site thought to have an irregular or non-typical profile.
To profile the flow:

1. Find the center line of the flow.
2. Find vertical velocity lines (VVL) that are halfway between the center line and the side walls of the pipe (refer to Figure 14). Use the widest part of the flow.
3. Measure the velocity at a minimum of 7 different depths along the center line.
4. Measure the velocity along the VVL at different depths. The distance between these depths should be the same as those on the center line.
5. Measure the velocity at the right and left corners of the flow.
6. Examine the data for any outliers. An outlier will fall outside of the best fit curve region if a graph were made of the velocity profile.
7. Calculate the average velocity (except outliers) of all measurements (except outliers). Remember to include the corner measurements.

Alternate 2D method

A portable velocity sensor can be used to make a 2D profile. Move the sensor in a swirl pattern across the entire cross-section (refer to Figure 15). Set the instrument to calculate the average of these velocity measurements. Refer to the user manual for the portable velocity sensor for detailed instructions.

Typical procedure (for the Flo-Mate velocity profiling meter):

1. Set the FPA time to the appropriate number of seconds.
2. Place the sensor at the start position and wait for a few seconds.
3. Press <ON/C> and start moving the sensor.
A.6 Auto-Cal automatic calibration

For sites with straight-run, circular concrete pipes, an Auto-Cal automatic site calibration can be used in place of velocity profiling.

A.7 Calibrate the sensor using the Cal Wizard in the Flo-Ware software

Prerequisite:

The sensor must be installed in the process and must be online in order to perform the calibration. The sensor can be configured and calibrated with the calibration wizard as follows:

1. In the Flo-Ware software, click on the **Programming** tab in the FL900 Series Driver window.
2. Click the Sensor Port [1] (sensor name).
3. Click the **CAL WIZARD** button. The Calibration Wizard window opens.
4. Select the options on each screen. When the Calibration Complete screen appears, click **FINISH**.
5. Click **WRITE TO LOGGER** to save the settings.
Appendix B Flow calculations

WARNING

Potential confined space hazards. Only qualified personnel should conduct the tasks described in this section of the manual.

For most applications, the flow in a channel is calculated and recorded by a flow meter. This appendix is included to calculate the flow manually, or to understand how flow is calculated.

Flow calculations are provided for:
- Circular channels (section B.1)
- Rectangular channels (section B.2 on page 32)
- Rivers and streams (section B.3 on page 33)

B.1 Circular channels

The following values are necessary before the flow can be calculated:
- The average velocity in ft/sec (Appendix A on page 23)
- The depth of flow in inches (in.) at the time of the velocity profile (section A.4 on page 24)
- The inside diameter of the channel in inches (in.)

1. Calculate the depth to diameter ratio (L/D) where:
 - L is the depth of flow in inches at the time of the profile.
 - D is the inside diameter in inches.
2. Find the flow unit multiplier (K) from Table 3 on page 30:
 - In the left column, find the L/D ratio from step 1.
 - Move to the right (to the desired units column) to get the flow unit multiplier (K).

 Note: Table 3 is for circular conduits only, measured in feet. The multiplier was derived using a one foot per second flow in a one foot diameter conduit as the model.

3. Convert the diameter to square feet:
 - \(D^2 = \frac{(\text{channel diameter in inches} \div 12) \times (\text{channel diameter in inches} \div 12)}{} \)

4. Calculate the flow:
 - Flow = \(K \times D^2 \times \text{average velocity} \).

Example: What is the flow in millions of gallons per day (MGD) in a 10-inch diameter channel with a 6-inch depth? The average velocity was found to be 1.5 ft/sec.

\[
L/D = \frac{6 \text{ inches}}{10 \text{ inches}} = 0.6
\]

\[
K = 0.3180
\]

\[
D^2 = \left(\frac{10 \text{ in} \div 12}\right)^2 = \left(0.833 \text{ ft}\right)^2 = 0.694 \text{ ft}^2
\]

\[
\text{Flow} = K \times D^2 \times \text{average velocity} = 0.3180 \times 0.694 \text{ ft}^2 \times 1.5 \text{ ft/sec} = 0.331 \text{ MGD}
\]
Table 3 Flow unit multiplier

<table>
<thead>
<tr>
<th>L/D</th>
<th>MGD</th>
<th>GPM</th>
<th>CFS</th>
<th>CMM</th>
<th>CMD</th>
<th>LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>.0009</td>
<td>.5966</td>
<td>.0013</td>
<td>.0023</td>
<td>3.2522</td>
<td>2.2585</td>
</tr>
<tr>
<td>.02</td>
<td>.0024</td>
<td>1.6824</td>
<td>.0037</td>
<td>.0063</td>
<td>9.1709</td>
<td>6.3687</td>
</tr>
<tr>
<td>.03</td>
<td>.0044</td>
<td>3.0814</td>
<td>.0069</td>
<td>.0117</td>
<td>16.7986</td>
<td>11.6644</td>
</tr>
<tr>
<td>.04</td>
<td>.0068</td>
<td>4.7296</td>
<td>.0105</td>
<td>.0179</td>
<td>25.7811</td>
<td>17.9036</td>
</tr>
<tr>
<td>.05</td>
<td>.0095</td>
<td>6.5894</td>
<td>.0147</td>
<td>.0249</td>
<td>35.9190</td>
<td>24.9438</td>
</tr>
<tr>
<td>.06</td>
<td>.0124</td>
<td>8.6351</td>
<td>.0192</td>
<td>.0327</td>
<td>47.0701</td>
<td>32.6876</td>
</tr>
<tr>
<td>.07</td>
<td>.0156</td>
<td>10.8475</td>
<td>.0242</td>
<td>.0411</td>
<td>59.1295</td>
<td>41.0621</td>
</tr>
<tr>
<td>.08</td>
<td>.0190</td>
<td>13.2113</td>
<td>.0294</td>
<td>.0500</td>
<td>72.0148</td>
<td>50.0103</td>
</tr>
<tr>
<td>.09</td>
<td>.0226</td>
<td>15.7143</td>
<td>.0350</td>
<td>.0595</td>
<td>85.6585</td>
<td>59.4851</td>
</tr>
<tr>
<td>.10</td>
<td>.0264</td>
<td>18.3460</td>
<td>.0409</td>
<td>.0694</td>
<td>100.0039</td>
<td>69.4471</td>
</tr>
<tr>
<td>.11</td>
<td>.0304</td>
<td>21.0975</td>
<td>.0470</td>
<td>.0799</td>
<td>115.0022</td>
<td>79.8627</td>
</tr>
<tr>
<td>.12</td>
<td>.0345</td>
<td>23.9609</td>
<td>.0534</td>
<td>.0907</td>
<td>130.6108</td>
<td>90.7020</td>
</tr>
<tr>
<td>.13</td>
<td>.0388</td>
<td>26.9294</td>
<td>.0600</td>
<td>.1019</td>
<td>146.7919</td>
<td>101.9388</td>
</tr>
<tr>
<td>.14</td>
<td>.0432</td>
<td>29.9967</td>
<td>.0668</td>
<td>.1135</td>
<td>163.5116</td>
<td>113.5497</td>
</tr>
<tr>
<td>.15</td>
<td>.0477</td>
<td>33.1571</td>
<td>.0739</td>
<td>.1255</td>
<td>180.7393</td>
<td>125.5134</td>
</tr>
<tr>
<td>.16</td>
<td>.0524</td>
<td>36.4056</td>
<td>.0811</td>
<td>.1378</td>
<td>198.4467</td>
<td>137.8102</td>
</tr>
<tr>
<td>.17</td>
<td>.0572</td>
<td>39.7374</td>
<td>.0885</td>
<td>.1504</td>
<td>216.6081</td>
<td>150.4223</td>
</tr>
<tr>
<td>.18</td>
<td>.0621</td>
<td>43.1480</td>
<td>.0961</td>
<td>.1633</td>
<td>235.1995</td>
<td>163.3330</td>
</tr>
<tr>
<td>.19</td>
<td>.0672</td>
<td>46.6334</td>
<td>.1039</td>
<td>.1765</td>
<td>254.1985</td>
<td>176.5267</td>
</tr>
<tr>
<td>.20</td>
<td>.0723</td>
<td>50.1898</td>
<td>.1118</td>
<td>.1900</td>
<td>273.5844</td>
<td>189.9892</td>
</tr>
<tr>
<td>.21</td>
<td>.0775</td>
<td>53.8135</td>
<td>.1199</td>
<td>.2037</td>
<td>293.3373</td>
<td>203.7064</td>
</tr>
<tr>
<td>.22</td>
<td>.0828</td>
<td>57.5012</td>
<td>.1281</td>
<td>.2177</td>
<td>313.4387</td>
<td>217.6657</td>
</tr>
<tr>
<td>.23</td>
<td>.0882</td>
<td>61.2496</td>
<td>.1365</td>
<td>.2319</td>
<td>333.8710</td>
<td>231.8548</td>
</tr>
<tr>
<td>.24</td>
<td>.0937</td>
<td>65.0555</td>
<td>.1449</td>
<td>.2463</td>
<td>354.6172</td>
<td>246.2619</td>
</tr>
<tr>
<td>.25</td>
<td>.0992</td>
<td>68.9161</td>
<td>.1535</td>
<td>.2609</td>
<td>375.6613</td>
<td>260.8759</td>
</tr>
<tr>
<td>.26</td>
<td>.1049</td>
<td>72.8286</td>
<td>.1623</td>
<td>.2757</td>
<td>396.9880</td>
<td>275.6861</td>
</tr>
<tr>
<td>.27</td>
<td>.1106</td>
<td>76.7901</td>
<td>.1711</td>
<td>.2907</td>
<td>418.5825</td>
<td>290.9823</td>
</tr>
<tr>
<td>.28</td>
<td>.1163</td>
<td>80.7982</td>
<td>.1800</td>
<td>.3059</td>
<td>440.4305</td>
<td>305.8545</td>
</tr>
<tr>
<td>.29</td>
<td>.1222</td>
<td>84.8503</td>
<td>.1890</td>
<td>.3212</td>
<td>462.5182</td>
<td>321.1932</td>
</tr>
<tr>
<td>.30</td>
<td>.1281</td>
<td>88.9439</td>
<td>.1982</td>
<td>.3367</td>
<td>484.8325</td>
<td>336.3892</td>
</tr>
<tr>
<td>.31</td>
<td>.1340</td>
<td>93.0767</td>
<td>.2074</td>
<td>.3523</td>
<td>507.3605</td>
<td>352.3337</td>
</tr>
<tr>
<td>.32</td>
<td>.1400</td>
<td>97.2464</td>
<td>.2167</td>
<td>.3681</td>
<td>530.0894</td>
<td>368.1176</td>
</tr>
<tr>
<td>.33</td>
<td>.1461</td>
<td>101.4507</td>
<td>.2260</td>
<td>.3840</td>
<td>553.0071</td>
<td>384.0327</td>
</tr>
<tr>
<td>.34</td>
<td>.1522</td>
<td>105.6875</td>
<td>.2355</td>
<td>.4001</td>
<td>576.1017</td>
<td>400.0706</td>
</tr>
<tr>
<td>.35</td>
<td>.1583</td>
<td>109.9546</td>
<td>.2450</td>
<td>.4162</td>
<td>599.3618</td>
<td>416.2234</td>
</tr>
<tr>
<td>.36</td>
<td>.1645</td>
<td>114.2500</td>
<td>.2545</td>
<td>.4325</td>
<td>622.7757</td>
<td>432.4831</td>
</tr>
<tr>
<td>.37</td>
<td>.1707</td>
<td>118.5715</td>
<td>.2642</td>
<td>.4488</td>
<td>646.3325</td>
<td>448.8419</td>
</tr>
<tr>
<td>.38</td>
<td>.1770</td>
<td>122.9172</td>
<td>.2739</td>
<td>.4653</td>
<td>670.0208</td>
<td>465.2922</td>
</tr>
<tr>
<td>.39</td>
<td>.1833</td>
<td>127.2851</td>
<td>.2836</td>
<td>.4818</td>
<td>693.8301</td>
<td>481.8265</td>
</tr>
<tr>
<td>.40</td>
<td>.1896</td>
<td>131.6733</td>
<td>.2934</td>
<td>.4984</td>
<td>717.7501</td>
<td>498.4375</td>
</tr>
<tr>
<td>.41</td>
<td>.1960</td>
<td>136.0797</td>
<td>.3032</td>
<td>.5151</td>
<td>741.7607</td>
<td>515.1178</td>
</tr>
<tr>
<td>.42</td>
<td>.2023</td>
<td>140.5026</td>
<td>.3130</td>
<td>.5319</td>
<td>765.8788</td>
<td>531.8603</td>
</tr>
<tr>
<td>.43</td>
<td>.2087</td>
<td>144.9400</td>
<td>.3229</td>
<td>.5487</td>
<td>790.0673</td>
<td>548.6578</td>
</tr>
</tbody>
</table>
Table 3 Flow unit multiplier (continued)

<table>
<thead>
<tr>
<th>L/D</th>
<th>MGD</th>
<th>GPM</th>
<th>CFS</th>
<th>CMM</th>
<th>CMD</th>
<th>LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>.44</td>
<td>.215</td>
<td>149.3902</td>
<td>.3328</td>
<td>.5655</td>
<td>814.3250</td>
<td>565.5034</td>
</tr>
<tr>
<td>.45</td>
<td>.2215</td>
<td>153.8512</td>
<td>.3428</td>
<td>.5824</td>
<td>838.6420</td>
<td>582.3902</td>
</tr>
<tr>
<td>.46</td>
<td>.2280</td>
<td>158.3212</td>
<td>.3527</td>
<td>.5993</td>
<td>863.0080</td>
<td>599.3111</td>
</tr>
<tr>
<td>.47</td>
<td>.2344</td>
<td>162.7985</td>
<td>.3627</td>
<td>.6163</td>
<td>887.4133</td>
<td>616.2592</td>
</tr>
<tr>
<td>.48</td>
<td>.2409</td>
<td>167.2811</td>
<td>.3727</td>
<td>.6332</td>
<td>911.8480</td>
<td>633.2277</td>
</tr>
<tr>
<td>.49</td>
<td>.2473</td>
<td>171.7673</td>
<td>.3827</td>
<td>.6502</td>
<td>936.3024</td>
<td>650.2100</td>
</tr>
<tr>
<td>.50</td>
<td>.2538</td>
<td>176.2553</td>
<td>.3927</td>
<td>.6672</td>
<td>960.7664</td>
<td>667.1989</td>
</tr>
<tr>
<td>.51</td>
<td>.2603</td>
<td>180.7433</td>
<td>.4027</td>
<td>.6842</td>
<td>985.2306</td>
<td>684.1879</td>
</tr>
<tr>
<td>.52</td>
<td>.2667</td>
<td>185.2295</td>
<td>.4127</td>
<td>.7012</td>
<td>1009.6850</td>
<td>701.1701</td>
</tr>
<tr>
<td>.53</td>
<td>.2732</td>
<td>189.7121</td>
<td>.4227</td>
<td>.7181</td>
<td>1034.1200</td>
<td>718.1385</td>
</tr>
<tr>
<td>.54</td>
<td>.2796</td>
<td>194.1894</td>
<td>.4327</td>
<td>.7351</td>
<td>1058.5250</td>
<td>735.0869</td>
</tr>
<tr>
<td>.55</td>
<td>.2861</td>
<td>198.6594</td>
<td>.4426</td>
<td>.7520</td>
<td>1082.9190</td>
<td>752.0076</td>
</tr>
<tr>
<td>.56</td>
<td>.2925</td>
<td>203.1204</td>
<td>.4526</td>
<td>.7689</td>
<td>1107.1080</td>
<td>768.8945</td>
</tr>
<tr>
<td>.57</td>
<td>.2989</td>
<td>207.5706</td>
<td>.4635</td>
<td>.7857</td>
<td>1131.4660</td>
<td>785.7401</td>
</tr>
<tr>
<td>.58</td>
<td>.3053</td>
<td>212.0080</td>
<td>.4724</td>
<td>.8025</td>
<td>1155.5640</td>
<td>802.5377</td>
</tr>
<tr>
<td>.59</td>
<td>.3117</td>
<td>216.4309</td>
<td>.4822</td>
<td>.8193</td>
<td>1179.7630</td>
<td>819.2801</td>
</tr>
<tr>
<td>.60</td>
<td>.3180</td>
<td>220.8374</td>
<td>.4920</td>
<td>.8360</td>
<td>1203.7830</td>
<td>835.9605</td>
</tr>
<tr>
<td>.61</td>
<td>.3243</td>
<td>225.2255</td>
<td>.5018</td>
<td>.8526</td>
<td>1227.7030</td>
<td>852.5715</td>
</tr>
<tr>
<td>.62</td>
<td>.3306</td>
<td>229.5934</td>
<td>.5115</td>
<td>.8691</td>
<td>1251.5120</td>
<td>869.1057</td>
</tr>
<tr>
<td>.63</td>
<td>.3369</td>
<td>233.9392</td>
<td>.5212</td>
<td>.8856</td>
<td>1275.2010</td>
<td>885.5560</td>
</tr>
<tr>
<td>.64</td>
<td>.3431</td>
<td>238.2607</td>
<td>.5308</td>
<td>.9019</td>
<td>1298.7580</td>
<td>901.9149</td>
</tr>
<tr>
<td>.65</td>
<td>.3493</td>
<td>242.5560</td>
<td>.5404</td>
<td>.9182</td>
<td>1322.1710</td>
<td>918.1745</td>
</tr>
<tr>
<td>.66</td>
<td>.3554</td>
<td>246.8232</td>
<td>.5499</td>
<td>.9343</td>
<td>1345.4320</td>
<td>934.3275</td>
</tr>
<tr>
<td>.67</td>
<td>.3615</td>
<td>251.0600</td>
<td>.5594</td>
<td>.9504</td>
<td>1368.5260</td>
<td>950.3654</td>
</tr>
<tr>
<td>.68</td>
<td>.3676</td>
<td>255.2643</td>
<td>.5687</td>
<td>.9663</td>
<td>1391.4440</td>
<td>966.2805</td>
</tr>
<tr>
<td>.69</td>
<td>.3736</td>
<td>259.4340</td>
<td>.5780</td>
<td>.9821</td>
<td>1414.1730</td>
<td>982.0645</td>
</tr>
<tr>
<td>.70</td>
<td>.3795</td>
<td>263.5668</td>
<td>.5872</td>
<td>.9977</td>
<td>1436.7010</td>
<td>997.7090</td>
</tr>
<tr>
<td>.71</td>
<td>.3854</td>
<td>267.6604</td>
<td>.5963</td>
<td>1.0132</td>
<td>1459.0150</td>
<td>1013.2050</td>
</tr>
<tr>
<td>.72</td>
<td>.3913</td>
<td>271.7125</td>
<td>.6054</td>
<td>1.0285</td>
<td>1481.1030</td>
<td>1028.5440</td>
</tr>
<tr>
<td>.73</td>
<td>.3970</td>
<td>275.7206</td>
<td>.6143</td>
<td>1.0437</td>
<td>1502.9510</td>
<td>1043.7160</td>
</tr>
<tr>
<td>.74</td>
<td>.4027</td>
<td>279.6822</td>
<td>.6231</td>
<td>1.0579</td>
<td>1524.5460</td>
<td>1058.7120</td>
</tr>
<tr>
<td>.75</td>
<td>.4084</td>
<td>283.5946</td>
<td>.6319</td>
<td>1.0735</td>
<td>1545.8720</td>
<td>1073.5220</td>
</tr>
<tr>
<td>.76</td>
<td>.4139</td>
<td>287.4553</td>
<td>.6405</td>
<td>1.0881</td>
<td>1566.9170</td>
<td>1088.1370</td>
</tr>
<tr>
<td>.77</td>
<td>.4194</td>
<td>291.2612</td>
<td>.6489</td>
<td>1.1025</td>
<td>1587.6630</td>
<td>1102.5440</td>
</tr>
<tr>
<td>.78</td>
<td>.4248</td>
<td>295.0096</td>
<td>.6573</td>
<td>1.1167</td>
<td>1608.0950</td>
<td>1116.7330</td>
</tr>
<tr>
<td>.79</td>
<td>.4301</td>
<td>298.6972</td>
<td>.6655</td>
<td>1.1307</td>
<td>1628.1970</td>
<td>1130.6920</td>
</tr>
<tr>
<td>.80</td>
<td>.4353</td>
<td>302.3210</td>
<td>.6736</td>
<td>1.1444</td>
<td>1647.9500</td>
<td>1144.4090</td>
</tr>
<tr>
<td>.81</td>
<td>.4405</td>
<td>305.8774</td>
<td>.6815</td>
<td>1.1579</td>
<td>1667.3360</td>
<td>1157.8720</td>
</tr>
<tr>
<td>.82</td>
<td>.4455</td>
<td>309.3629</td>
<td>.6893</td>
<td>1.1711</td>
<td>1686.3350</td>
<td>1171.0660</td>
</tr>
<tr>
<td>.83</td>
<td>.4505</td>
<td>312.7735</td>
<td>.6969</td>
<td>1.1840</td>
<td>1704.9260</td>
<td>1183.9760</td>
</tr>
<tr>
<td>.84</td>
<td>.4552</td>
<td>316.1053</td>
<td>.7043</td>
<td>1.1966</td>
<td>1723.0880</td>
<td>1196.5890</td>
</tr>
<tr>
<td>.85</td>
<td>.4599</td>
<td>319.3538</td>
<td>.7115</td>
<td>1.2089</td>
<td>1740.7950</td>
<td>1208.8860</td>
</tr>
<tr>
<td>.86</td>
<td>.4644</td>
<td>322.5143</td>
<td>.7186</td>
<td>1.2208</td>
<td>1758.0230</td>
<td>1220.8490</td>
</tr>
<tr>
<td>.87</td>
<td>.4688</td>
<td>325.5815</td>
<td>.7254</td>
<td>1.2325</td>
<td>1774.7430</td>
<td>1232.4600</td>
</tr>
</tbody>
</table>
Flow calculations

B.2 Rectangular channels

Flow in rectangular channels is calculated as follows:

1. Find the average velocity with the 0.2, 0.4, 0.8 method (refer to section A.5.2 on page 26).

 Note: For channel widths that are six feet or more, use the .2, .6, .8 method as described for rivers and streams (section B.3 on page 33). Velocity units must be in ft/sec.

2. Calculate the cross-sectional area in square feet (ft²):

 - Area = [(depth of flow) in. ÷ 12] x [(channel width) in. ÷ 12]

3. Calculate the flow:

 - Average velocity x cross-sectional area

The result will be a flow rate in ft³/sec (CFS). For conversion to other flow units, refer to section B.4 on page 35.

Example: What is the flow in millions of gallons per day (MGD) in a rectangular channel that is 24 inches wide and has a 10-inch deep flow?

Average velocity:

Velocity at .2 x depth (2 inches) = 1.5 ft/sec
Velocity at .4 x depth (4 inches) = 1.7 ft/sec
Velocity at .8 x depth (8 inches) = 1.8 ft/sec
(1.5 + 1.8) ÷ 2 = 1.65 ft/sec
Average velocity = (1.65 + 1.7) ÷ 2 = 1.67 ft/sec

Cross-sectional area:

Convert inches to feet: 10 in ÷ 12 = 0.83 ft
Area = 0.83 ft x 2 ft = 1.66 ft²

Flow = 1.67 ft²/sec x 1.66 ft = 2.77 ft³/sec
From Table 4 on page 35, 2.77 ft³/sec x 0.64632 = 1.7903 MGD

<table>
<thead>
<tr>
<th>L/D</th>
<th>MGD</th>
<th>GPM</th>
<th>CFS</th>
<th>CMM</th>
<th>CMD</th>
<th>LPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>.88</td>
<td>.4731</td>
<td>328.56</td>
<td>.7320</td>
<td>1.2437</td>
<td>1790.92</td>
<td>1243.69</td>
</tr>
<tr>
<td>.89</td>
<td>.4772</td>
<td>331.41</td>
<td>.7384</td>
<td>1.2545</td>
<td>1806.53</td>
<td>1254.54</td>
</tr>
<tr>
<td>.90</td>
<td>.4812</td>
<td>334.15</td>
<td>.7445</td>
<td>1.2650</td>
<td>1821.51</td>
<td>1264.95</td>
</tr>
<tr>
<td>.91</td>
<td>.4850</td>
<td>336.79</td>
<td>.7504</td>
<td>1.2749</td>
<td>1835.87</td>
<td>1274.91</td>
</tr>
<tr>
<td>.92</td>
<td>.4886</td>
<td>339.29</td>
<td>.7560</td>
<td>1.2844</td>
<td>1849.52</td>
<td>1284.39</td>
</tr>
<tr>
<td>.93</td>
<td>.4920</td>
<td>341.63</td>
<td>.7612</td>
<td>1.2933</td>
<td>1862.41</td>
<td>1293.36</td>
</tr>
<tr>
<td>.94</td>
<td>.4952</td>
<td>343.85</td>
<td>.7662</td>
<td>1.3017</td>
<td>1874.46</td>
<td>1301.71</td>
</tr>
<tr>
<td>.95</td>
<td>.4981</td>
<td>345.92</td>
<td>.7707</td>
<td>1.3095</td>
<td>1885.61</td>
<td>1309.46</td>
</tr>
<tr>
<td>.96</td>
<td>.5008</td>
<td>347.78</td>
<td>.7749</td>
<td>1.3165</td>
<td>1895.75</td>
<td>1316.49</td>
</tr>
<tr>
<td>.97</td>
<td>.5032</td>
<td>349.42</td>
<td>.7785</td>
<td>1.3277</td>
<td>1904.73</td>
<td>1322.73</td>
</tr>
<tr>
<td>.98</td>
<td>.5052</td>
<td>350.82</td>
<td>.7816</td>
<td>1.3280</td>
<td>1912.36</td>
<td>1328.03</td>
</tr>
<tr>
<td>.99</td>
<td>.5068</td>
<td>351.91</td>
<td>.7841</td>
<td>1.3321</td>
<td>1918.28</td>
<td>1332.14</td>
</tr>
<tr>
<td>1.00</td>
<td>.5076</td>
<td>352.51</td>
<td>.7854</td>
<td>1.3344</td>
<td>1921.53</td>
<td>1334.40</td>
</tr>
</tbody>
</table>

Table 3 Flow unit multiplier (continued)
B.3 Rivers and streams

1. Find the depth of each segment of the channel:
 a. Divide the width of the channel into segments of equal length (d). Refer to Figure 16 on page 34.
 b. Locate the center line of each segment (½ x d).
 c. Measure the depth of each segment on the segment center line.

 Note: The .2, .6, and .8 positions for rivers and streams are measured from the surface. All depth and velocity measurements must be on the same plane.

 Note: Smaller segments will give better results. If the difference in mean velocity between two adjacent segments is greater than 10%, make the segments smaller.

2. Use a velocity profile to calculate the flow for each segment:
 a. Calculate the .2, .6, .8 velocity positions on the center line of each segment.
 b. Measure the velocity at the .2, .6, and .8 positions.
 c. Calculate the average of the .2 and .8 velocities.
 d. Calculate the average of the .6 velocity and the average of the .2 and .8 velocities. This is the average velocity.
 e. Calculate the cross-sectional area of each segment. Refer to Figure 17 on page 34.
 f. Calculate the flow of each segment:

 \[
 \text{Flow} = \text{segment area} \times \text{average velocity}
 \]

3. Add the flows of all of the segments. The total flow for the river or stream is the sum of the segment flows.
Flow calculations

Figure 16 Segments for a river or stream

Figure 17 Segment area calculations

<table>
<thead>
<tr>
<th>1</th>
<th>Trapezoid</th>
<th>2</th>
<th>Rectangle</th>
</tr>
</thead>
</table>

\[\frac{(a + b)}{2} \times d = A \]

\[d \times h = A \]
Flow calculations

B.4 Flow unit conversions

1. Find the original unit in the left column of Table 4.
2. Find the new unit in the top row of Table 4.
3. Find the table cell where the units intersect. This is the conversion factor.
4. Multiply the original value by the conversion factor to get the value in terms of the new unit.

Example: convert 20 ft³/sec (CFS) to million gallons per day (MGD).
From Table 4, the conversion factor from CFS to MGD is 0.64632.
20 ft³/sec x 0.64632 = 12.9 MGD

Table 4 Flow unit conversion factors

<table>
<thead>
<tr>
<th>From (original units)</th>
<th>CFS</th>
<th>MGD</th>
<th>GPM</th>
<th>CMD</th>
<th>CMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS</td>
<td>1</td>
<td>0.64632</td>
<td>448.831</td>
<td>2446.576</td>
<td>1.69901</td>
</tr>
<tr>
<td>MGD</td>
<td>1.54723</td>
<td>1</td>
<td>694.44</td>
<td>3785.412</td>
<td>2.62876</td>
</tr>
<tr>
<td>GPM</td>
<td>0.002228</td>
<td>0.00144</td>
<td>1</td>
<td>5.45099</td>
<td>0.0037854</td>
</tr>
<tr>
<td>CMD</td>
<td>0.000408</td>
<td>0.0002642</td>
<td>0.18345</td>
<td>1</td>
<td>0.0006944</td>
</tr>
<tr>
<td>CMM</td>
<td>0.5885</td>
<td>0.380408</td>
<td>264.172</td>
<td>1440</td>
<td>1</td>
</tr>
</tbody>
</table>

Flow units:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGD</td>
<td>million gallons per day</td>
</tr>
<tr>
<td>GPM</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>CFS</td>
<td>cubic feet per second</td>
</tr>
<tr>
<td>CMM</td>
<td>cubic meters per minute</td>
</tr>
<tr>
<td>CMD</td>
<td>cubic meters per day</td>
</tr>
<tr>
<td>LPM</td>
<td>liters per minute</td>
</tr>
</tbody>
</table>
A
accuracy problems ... 19
APR tube ... 8
area, cross-sectional .. 32

C
cleaning .. 15
concrete mold for dams .. 13
confined space entry .. 9
conversion factors ... 35

D
dam construction for low flow 13
depth measurement .. 8
depth of flow measurement 24

E
electrodes ... 7
errors .. 19

F
Faraday's law ... 7
flow rate calculation .. 8
circular channels ... 29
rectangular channel ... 32
rivers and streams ... 33
flow unit multipliers ... 30

I
installation .. 9
installation kits ... 12

K
K, flow unit multiplier ... 30

L
L/D ratio ... 29
location guidelines ... 9
low-flow applications ... 13

M
measurement
 depth ... 8
 velocity ... 7

P
parts .. 9

S
safety information .. 5
sensor locations ... 9
specifications ... 3

T
theory of operation ... 7
troubleshooting .. 19

U
units, flow .. 35

V
velocity measurement .. 7
velocity profile
 0.4 method .. 26
 0.9 Vmax method ... 25
 2D method .. 26
 about ... 23
 methods .. 25